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Abstract  

A genera l  convergence theory  is developed f o r  i t e r a t i v e  

processes  of the form x+l = 05, k=O,l,...; it is founded 
on c e r t a i n  nonl inear  es t imates  f o r  t h e  i t e r a t i o n  func t ion  G 

as w e l l  a8 on a soca l l ed  concept of major ie ing sequences, 
This new approach reduces the  s tudy  of t h e  i t e r a t i v e  process  
t o  that of a second order  nonl inear  d i f f e rence  equation. 

The theory  con ta ins  as s p e c i a l  cases  both t h e  wellknown 
c o n t r a c t i o n  theorem as w e l l  as the Newton-Kantorovich theorem, 
and, moreover, it encompasses a l l  s i m i l a r  theorems given so 

far f o r  approximate Newton processes  of t h e  form 

s+l = \ - B(%)F% 9 k=0,1,.. 

Various gene ra l i za t ions  of t h e  theory  app l i cab le  t o  non- 
s t a t i o n a r y  processes  of the form 
also discussed , 

%+1 = Gk%, k=O,l,.., a re  
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A UNIFIED CONVERGENCE THEORY FOR L CLASS OF ITERATIVE PROCESSES 
1 Werner C. Bheinboldt ) 

1. In t roduc t ion  

One of t h e  c e n t r a l  numerical techniques f o r  so lv ing  a nonl inear  opera tor  

equat ion  Fx = 0 is Newton's method 

(1.1) %+1= xk - ( F ' ( % ) ) - % s  , k=O,l, . . .  . 
Here F'(x) denotes  t h e  Frechet d e r i v a t i v e  of F a t  X. P a r t l y  t o  overcome 
p o s s i b l e  numerical  d i f f i c u l t i e s  connected with t h e  eva lua t ion  of F' a t  
each s t e p , . a n d  p a r t l y  t o  s impl i fy  t h e  s o l u t i o n  of t h e  l i n e a r  problem as soc i -  
a t e d  wi th  (1.1) f o r  each k , approximate Newton processes  of t h e  gene ra l  form 

have rece ived  inc reas ing  a t t e n t i o n .  Here B ( x )  is f o r  each x a l i n e a r  opera tor  

which is u s u a l l y  der ived f r o m  o r  r e l a t e d  t o  F'(x). For example, t h e  i t e r a t i o n s  
s t u d i e d  by Ben-Israel [2],[3], Bryan [43, Liebe r s t e in  [ll], and Zincenko [ Z l l  
[223, are of t h i s  form and so a re  t h e  soca l l ed  Newton-Gauss-Seidel methods 
considered by Ortega and Rheinboldt Ll5-j. A gene ra l i za t ion  of (1.2) are t h e  
processes  where i n s t e a d  of B(%) only some sequence of l i n e a r  opertitors Bk 
is given, Le. ,  

= - Bk F% 9 k=0,1~0.. (1.3) %+l 
Some s p e c i a l  r e s u l t s  about i t e r a t i o n s  of t h i s  last type have been given by 
Bartle [l]. However, t h e  form (1.3) encompasses almost all u s e f u l  i t e r a t i o n s  
and hence meaningful general r e s u l t s  can probably only be expected once t h e  
B are s p e c i f i e d  more prec ise ly .  k 

When only met r ic  p r o p e r t i e s  of t he  underlying space a r e  used, t h e r e  are 
t h r e e  broad c l a s s e s  of  convergence theorems f o r  methods such as those  mentioned 

above. The p o i n t - o f - a t t r a c t i o n  theorems begin with t h e  ex i s t ence  of a s o l u t i -  

on x, of Fx = 0 and assure convergence of t h e  i terates 5 t o  x' if only x 
0 

is chosen s u f f i c i e n t l y  c lose  t o  x'. The most i d e a l  and a t  t h e  same time ra- 
r e s t  theorems are t h e  g loba l  ones where a ' l a rge '  domain D can be s p e c i f i e d  

') I n s t i t u t e  f o r  Fluid Dynamics and Applied Mathematics, and Computer Science 
Center ,  Univers i ty  of Maryland, College Park, Maryland. 

This work w a s  i n  p a r t  supported by t h e  U.S.Nationa1 Aeronautics and Space 
Adminis t ra t ion under grant NsG-398 and by t h e  U.S.Army Research Off ice  under 
g r a n t  DA-ARO-(D)-31-124 G 563r8 
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I 
and f o r  any x t5 D t h e  i t e r a t e s  converge t o  some s o l u t i o n  of Fx = 0. 
Between these  two extremes a r e  those convergence theorems which begin 

wi th  condi t ions  about t h e  i n i t i a l  approximation x 
that s t a r t i n g  from that x the  iterates converge tc a so lu t ioo .  The b e s t  

known proto types  f o r  t h i s  last c l a s s  a r e  t h e  con t r ac t ion  theorem and t h e  

Kantorovich proof of Newton's nethod ( see  e.g., [7] 

0 

and conclude from t h i s .  
0 

0 

[8]>. 

I n  this paper a un i f i ed  theory is developed f o r  convergence r e s u l t s  of 

t h e  above t h i r d  c l a s s  appl icable  t o  a broad c l a s s  of methods. Necessarily, 
of  course,  t h i s  theory  contains  as s p e c i a l  cases  t h e  cont rac t ion-  and t h e  
Newton-Eantorovich theorem, thereby r e f u t i n g  t h e  observa t ion  f r equen t ly  
made t h a t  t hese  two r e s u l t s  a r e  conceptua l ly  very d i f f e r e n t  from each other .  

But more impor tan t ly ,  t h e  theory a l s o  encompasses, as f a r  as can be de t e r -  
mined, all t h e  theorems of the mentioned type given so f a r  f o r  processes  

of t h e  form (1.2) and t o  some exten t  of t h e  form (1.3). 

The theory  i s  founded on nonlinear  e s t ima tes  f o r  t h e  i t e r a t i o n  func t ion  

and on a s o c a l l e d  concept of major iz ing  sequences. This l a t t e r  concept is 
based on a simple p r i n c i p l e  observed t o  unde r l i e  Kantorovich's majorant 
proof of Newton's method, while t h e  nonl inear  e s t ima tes  occur i n  a n a t u r a l  
way i n  t h e  s tudy  of t h e  processes  (1.2) and r ep resen t  a needed g e n e r a l i z a t i o n  
of e s t ima tes  used by C o l l a t z  [63 and SchrGder 1173, [18J0 

I n  its s imples t  form, the  genera l  convergence theory reduces t h e  s tudy  of 
t h e  i t e r a t i v e  processes  t o  t h a t  of a second order  d i f f e rence  equation. In  
ana lys ing  t h e  d i f f e r e n t  known r e s u l t s  about var ious  processes ,  i t  t u r n s  out  
t h a t  t h e  assumptions made always happen t o  l e a d  t o  a simple so lvab le  d i f fe -  

r ence  equation. Upon i n v e s t i g a t i o n  of n a t u r a l  extensions of t hese  s imple 

d i f f e r e n c e  equat ions ,  i t  is observed that t h e  un i f i ed  approach used he re  
permi ts  i n  s e v e r a l  cases  the  gene ra l i za t ion  of  t hese  ind iv idua l  r e s u l t s  - 
a t  t h e  same time providing a n  i n s i g h t  i n t o  t h e  va r ious  p o s s i b i l i t i e s  of 
proving many o t h e r  similar r e s u l t s .  Simultaneously,  this approach makes i t  
evident  that a much deeper s tudy of t h e  r e s u l t i n g  d i f f e r e n c e  equat ions is 
now needed in order  t o  a r r i v e  a t  more gene ra l  and a t  t h e  same time more 

widely usable  convergence theorems f o r  t h e  processes  (1.2) and (1.3). 

The gene ra l  convergence theory is presented i n  S e c t i o n  26 t hen  Sec t ion  3 
g i v e s  as a first a p p l i c a t i o n  a theorem f o r  t h e  process  
which i n  t u r n  provides  t h e  basis f o r  subsequent uniqueness r e s u l t s .  Sec t ion  4 

s+l = G s  , k=0,1,.., 
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t r e a t s  i t e r a t i o n s  of t h e  form (1.2) and inc ludes  as s p e c i a l  cases  var ious  
theorems about Newton's method; finally, Sect ion 5 develops a n  extension 

of t h e  theory app l i cab le  t o  the genera l  case  (1.3). 

I would l i k e  t o  express my thanks t o  Professor James M. Ortega of the 

Universi ty  of Maryland for numerous en l igh ten ing  d iscuss ions  which helped 
c r y s t a l l i z e  s e v e r a l  of t h e  concepts developed here. I n  p a r t i c u l a r ,  Professor 
Ortega a b 0  found independently a s h o r t  proof of Newton's method along the 

l i n e s  used here  (see (1611. 



2 .  A j o r i z i n g  Sequences and General-zed Contract ions 

, 
In 181 Kantorovich introduced a proof f o r  t he  convergence of Newton's 

method (1.1) based on t h e  soca l led  concept of a majorizing operator.  In 
b r i e f ,  an opera tor  equat ion x = Gx on a Banach space X is s a i d  t o  be 
majorized by t h e  r e a l  equation t = cp(t) i f  \IGxo-xoI d cp(t )-t and 

u Ci'(x)lI cp'(t) whenever 11 x-xo 11 5 t-t . Using t h i s  assumption, t h e  con- 
i n  X is deduced from that vergence of t h e  i t e r a t i v e  process 

of  t h e  i t e r a t i o n  tk+l = q ( t k )  on t h e  r e a l  l i n e ,  Although this approach 
proves t o  be e f f e c t i v e  f o r  the s tudy of Newton's method i t s e l f ,  i t  rests 
e s s e n t i a l l y  on t h e  requirement that t h e  majorizing process  have t h e  same 
form as t h e  underlying process ,  and t h i s  i n  t u r n  is a seve re  l i m i t a t i o n  
when i t  comes t o  t h e  s tudy  of t h e  gene ra l  processes  (1.2). 

0 0  

0 

%+l = G% 

Actual ly ,  a c l o s e r  s tudy  of t h i s  Kantorovich approach r e v e a l s  that 

underlying it is a very simple p r inc ip l e .  In order  t o  descr ibe  i t  we 
i n t roduce  t h e  fol lowing concept. 

2.1 - Defin i t ion :  L e t  {\\ be a sequence i n  t h e  met r ic  space X. Then a 
real  non-negative sequence itk\ is s a i d  t o  majoriee {%\ i f  
==3: 

Note that any majorizing sequence {tk\ of (%\ is n e c e s s a r i l y  non- 
decreasing. If  {t,\ majoriees {%\ C X, then  f o r  m > k L 0 

m - I  *k -I 

(2.1) 3 'Xm,%> z g ( x j + l , x j )  4 z ( t j + l  - t .I = tm - tk 0 
d=k i= h J 

Hence, i f  

and , the re fo re ,  i f  X is complete, l i m  5 = x* also e x i s t s  and for m 3  -e 

we o b t a i n  from (2.1) t h e  error estimate 

lim tk = tY 4 + *  e x i s t s ,  t hen  {%) is a Cauchy sequence i n  X, 

This is t h e  above mentioned p r i n c i p l e  behind t h e  Kantorovich proof of 
Newton's method. The idea of the majorizing sequence l i e s  i n  t h e  simple 

, t hen  sk 4 + &  is a observa t ion  t h a t  i f  3(\+l,%) 4 s 
s u f f i c i e n t  cond i t ion  f o r  t h e  convergence of t h e  seqience {%) in t h e  

complete space X. The p a r t i a l  sums to 0, tk = t~~ , k=1,2,.... 
k + l  
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m 

form a majorizing sequence of ix& . Since 
as an upper bound on t h e  ' t o t a l  pa th  length '  of t h e  sequence (.%\ , ' t h e  

major iz ing  p r i n c i p l e  says  that when t h e  t o t a l  p a t h  l e n g t h  is bounded t h e  
sequence is convergent . 

5 $(\+l,x$ may be  viewed 

For t h i s  p r i n c i p l e  t o  be u s e f u l a  mechanism is needed t o  ob ta in  a majo- 
r i z i n g  sequence itk) f o r  given 
assunpt ions  , e i t h e r  about t h e  generat ing mechanism of t h e  sequence 
a t  l e a s t  about t h e  r e l a t i o n  between succeeding members 5 and 
ou t  that i n  many cases  when the  5 a r e  def ined by t h e  process  

. This i n  t u r n  r e q u i r e s  appropr i a t e  

kk\ Or 
It turns 

majorizing sequences can be constructed by so lv ing  a d i f f e r e n c e  equat ion 

of t h e  form 

(2.4) 

f o r  given to and tl. 

To s i m p l i f y  t h e  no ta t ion ,  the fol lowing c l a s s  of func t ions  shall be used. 

2,2 - Defin i t ion :  A. func t ion  c p :  Q L: Rp- R1 is sa id  t o  be of class rP(Q) 
if i t  has t h e  fol lowing proper t ies :  ( a )  The domain Q is a hypercube 
&. = J1 x J2* - - -  x. J where each Ji i s  a n  i n t e r v a l  on [O, 00) conta in ing  0, i.e., 

P 
an i n t e r v a l  of t h e  form [ O , d  , [O,a), o r  [ o , a )  ; (b)  cp is non-negative 
a d  i so tone  on Q, i.e., i f  

--- 

(i) (1) (2) 
3 :  (u, , ..., u ( ~ ) )  E Q,  i=1,2 and u I u 

+La.. n < .-/--(I) (l>,p * (2 )  ' ( 2 ) .  j 
P .I- -1- -,..a,;, 1 Y Y G Y  v V \ U 1  9 ...I u I c, V(Ul P 

Let cp (5 r3(Q) , Q = J1x J 2 x J 3  . Then t h e  s o l u t i o n  itk\ of t h e  d i f f e r e n c e  
equa t ion  (2.4) is s a i d  t o  e x i s t  f o r  given to, tl i f  

3 (2.5) tk+l - t k $  J 1 ,  tk E J 2 / \  J 

f o r  a l l  k 2 0, i . e * ,  i f  t h e  e n t i r e  sequence {tkj def ined by (2.4) exists. 

Using t h i s  n o t a t i o n  we can formulate the  fol lowing simple but, at  t h e  

same time, gene ra l  convergence theorem f o r  t h e  process  (2 .3) .  

A 2  - Basic Majorant Theorem: Let G: D C X + X  be  an opera tor  on t h e  complete 

me t r i c  space X,  and suppose there  e x i s t s  a func t ion  
x o E  D such that on some se t  

3 
--- 

cp E r (Q) and a point 
D O C  D 



whenever x,Gx E Do. Assume that f o r  to=O, tl = g(Gxo,xo) the s o l u t i o n  . 
itk\ of the  d i f f e rence  equation (2.4) e x i s t s .  I f  t h e  sequence (%\ defined 

by (2.3) is contained i n  Do, then {t,$ majorizes {%\ . Hence i f  l im tk = tr 
4 +e , a l s o  
x' € D and cf is continuous a t  x' , then  

l i m  \ = x C  e x i s t s ,  and the  e r r o r  es t imate  (2 .2 )  holds, If 
x*' = Gx'. 

The proof folXows by induction. The r e l a t i o n s  

pQ 5-11  I: t k  - tk-1 ' +%' xo) 4 tk  

p k + l '  5) 6 cp(  p ( ' k ,  Xk-1)' g ( 5 ,  X0)' y(Xk-11 xo))  

c l e a r l y  hold f o r  k = l ,  and f o r  g e n e r a l k  the  i s o t o n i c i t y  of cp implies  that 

4 (P(tk - tk,l' tk '  tk,l) = tk+l  - tk 

and hence by (2.1) that 

majorized by itk\ which proves the  convergence r e s u l t .  The f ixpo in t  state- 
ment fol lows d i r e c t l y  from (2.3) us ing  the con t inu i ty  of G a t  xy'. 

C ( ) ~ + ~ , X ~ )  4 tk+l - to = tk+l 0 Thus,{%\ is 

In t h e  a p p l i c a t i o n  of t h i s  theorem i t  must  be asce r t a ined  that (\\ C Do . 
h f r equen t ly  used condi t ion  is GD' C D' f o r  some s e t  D' C Do; t hen  

c l e a r l y  C D' whenever xo d D'. A conceptual ly  d i f f e r e n t  approach 
p l aces  r e s k r i c t i o n s  on some of  the  e a r l y  i t e r a t e s  and i n f e r s  from t h i s  that 
a l l  subsequent i t e r a t e s  remain i n  Do. 

t5 Do 2.4 - Lemma: Let the condi t ions of Theorem 2.3 be s a t i s f i e d .  If  x19...~x 
and 
(2.7) S(xm, tk-t,) C Do' k=m,m+l, . . .  , 
then  
e i t h e r  ( a )  E(xm, t*- t m )  c D~ o r  (b)  s(xm. t*- t c D~ and t k L  t' 
f o r  k 2 0. 

--- m --- - --- e-- 

- 
5 c Do f o r  k L m. I f  lim tk = t r d  +e exis ts ,  (2.7) is s a t i s f i e d  if, 

m 

The proof proceeds aga in  by induction. If xOl. . . ,% 6 Do f o r  some 

s ( x , r )  and S(x , r )  denote the closed and open b a l l  wi th  cen te r  x 
and r a d i u s  r. 
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* k k m, then xkCl is st i l l  defined and, as i n  t he  proof of Theorem &I, it 
fo l lows  that q ( X j + p  x . 1  ,L tj+l - t i  f o r  j=O,l,...,k. Therefore by 
(2.11, y ( r ~ + ~ ,  xm) L, t k + l  - tm, and hence xk+l E s(xm' tk+l  - t m ) C  Do. 
The second p a r t  of t he  statement is immediate. 

--- 
u - 

I n  most a p p l i c a t i o n s  t h e  index rn i n  (2.7) is se t  equal  t o  0 o r  1, and - - more s p e c i f i c a l x y  - t he  simple condi t ions  S(xo, t ' )  C D or 
0 - 

t'- t ) C D are used. s(=p 1 0 

Theorem 2,> toge ther  wi th  Lemma 2.4 --- con ta in  as s p e c i a l  case  t h e  usua l  
c o n t r a c t i o n  theorem. In that ins tance  we have q (u )  = au with a eland 

(2.6) is rep laced  by t h e  s t ronger  condi t ion  

--- -e- 

g(Gy, Gx) I cp(  ? ( y , x ) )  = a g(y ,x)  , z , y  E Do . 
It then  fol lows immediately that 

S(xl, t" - t,) C Do 
f o r  r 2 a y(xl, x ) / ( l -a>.  

t' =-a t l / ( l -a ) ,  and hence t h e  cond i t ion  - 
is equivalent  t o  t h e  well-known condi t ion  g(xl , r )  C Do 

Theorem &> p laces  t h e  burden of t h e  convergence proof on t h e  a n a l y s i s  --- 
of t h e  behavior of t h e  d i f f e rence  equat ion (2.4). The ques t ion  arises 
whether gene ra l  condi t ions  for cp can be found which a s s u r e  the convergence 
of [tk\ for c e r t a i n  t I n  t h e  s p e c i a l  case  of the equat ion 

= v(tk - tk,l) , to = O, t 

s e v e r a l  such r e s u l t s  can be derived. We shall not go i n t o  d e t a i l s  here,  The 
p r i n c i p a l  t o o l  of t h e  a n a l y s i s  is  i n  t h i s  case  t h e  fol lowing well-known 
lemma which w i l l  also be needed s e v e r a l  t imes l a t e r  on ( see  e.g., [97 ). 

1' 
given,  (2.8) tk+l  tk 1 

1 2.2 - Kantorovich Lemma:: Let y: [to, so] C R1 3 R be continuous and 
i s o t o n e ,  and 
=.t- 

Then t h e  sequences t + ( t o )  L to, y ( s o >  4 so. = y ( t k ) ,  k + l  
= v(sk), k=0,1,.., s a t i s f y  k + l  S 

IC Y 

0 
L tk 5 tk+l 6' l i m  tk = t C a = l ia sk L ek+l I sk 4 s * where t is t h e  smallest and sy t h e  l a r g e s t  f i xpo in t  of i n  [to, SJ 

In t h e  case  of t h e  f u l l  d i f f e rence  equat ion  (2.4) no gene ra l  convergence 
cond i t ions  a r e  known. The a n a l y s i s  o f  t h i s  equat ion is considerably s impli-  

f i e d  i f  t h e r e  e x i s t s  a func t ion  

Y ( J )  C J2, and 
3' : J C R1-+ R1 such that J C J 

Cy(J) - J C Jl,and that 



(2.9) c p q 4 t )  - t ,  yw, t )  = v (  "( t ) )  - v ( t >  9 t fE J. 

It is then easily seen that {t,\ C J is a s o l u t i o n  of (2.4) with t o = O ,  

tl = y(0) i f  and only i f  

(2.10) tk+l  = y(t,) , to = 0, k=0,1,... 

Accordingly, (2.10) shall be ca l l ed  a ' f i r s t  i n t e g r a l '  of t h e  d i f f e rence  
equat ion (2.4). If  t X E  J and is continuous at  t', (2.10) implies  that 

t' = y(t' 1, and if v/  is iso tone ,  i t  follows from Lemma 2.5 --- that 
f o r  0 4 t 

v ( t )  t --- 
t' , and that t r  is the  smal les t  non-zero f ixpo in t  of y in J. 

Theorem &z r ep resen t s  a gene ra l i za t ion  of a similar con t r ac t ion  theorem --- 
of Col l a t e  [6] who e s s e n t i a l l y  assumes in s t ead  of (2.6) that 

(2.11) y ( G Y ,  GX) v (  5 ( ~ 9 x 1  + 7 (x,x0>) - C y (  $(x,x0>) 9 X,Y C- Do 
2 where cp(u,v) = v(u+v) - y ( v )  is of c l a s s  r (Q). Using our terminology, 

C o l l a t z  then proceeds t o  show that 

(2.12) tk+l = y ( t k )  + y 9 to 0, y 2 ~(X1,Xo)~ k=0,1,... 

is a majorizing sequence of [%\. This is evident ly  equivalent  t o  t h e  
assumption that (2.12) r ep resen t s  a first i n t e g r a l  of t h e  d i f f e rence  
equat ion (2.4). 

Instead of (2.11) ,SchrGder c18] cons iders  more genera l  condi t ions ,  as, 
f o r  example, 

( 2 . 1 9  7 (GY,Gx) 2 UJ( q(s .x) .  ~(Y,X_), U g(x,x-), v $(GY,x), y(Gx,y)) 

where 
assumption is made that a func t ion  Ct. = y ( u )  e x i s t s  such that 

cp 6 r 5 (Q). But t h i s  gene ra l i t y  is not used; i n  f a c t ,  t h e  a d d i t i o n a l  

y(v)  - y(u> 2 cp(v-u7 v, u7 y(v>-u, y(u)-v> . 
This implies  that (2.11) holds,  and s i n c e  i n  a l l  subsequent consideratione, 
Schrsder only uses  t h e  majorizing sequence (2.121, h i s  r e s u l t s  are no more 
gene ra l  than  those  of Col la tz .  

In connection with t h e  i t e r a t i v e  processes  (1.2) we shall s e e  that 
condi t ion  (2.6) f requent ly  a r i s e s  i n  a very natural way while t h e  correspon- 
d ing  more r e s t r i c t i v e  condi t ion  

(2.14) (Gy, Gx) CP( %(Y, XI, f ( y , x 0 ) ,  p(X,Xo)) 

only a p p l i e s  i n  a much smaller  domain. However, t he  u6e of t h i s  condi t ion  
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(2.14) toge ther  with the  exis tence of a first i n t e g r a l  (2.10) of (2.4) 
permits  t h e  d e r i v a t i o n  of some uniqueness r e s u l t s  f o r  t h e  f i x p o i n t  xy. 

The fol lowing uniqueness theorem is a s l i g h t  gene ra l i za t ion  of a r e s u l t  
of C o l l a t e  [63 . 
2.6 - F i r s t  Uniqueness Theorem: Suppose that the  assumptions of Theorem 2,2 
are v a l i d  except that ins t ead  o f  (2.6) t h e  condi t ion  (2.14) holds f o r  all 

1 1 x,y C Do. Suppose that 
of t h e  d i f f e r e n c e  equat ion (2.41, and that 

t h e r e  is no o the r  f ixpo in t  of G i n  t h e  s e t  

- Proof: Suppose that 

and by induct ion  we s e e  that 9 <f, 
s i n c e  itk\ majorizes  [%\ it follows that 

--- --- --- 

y : J C R  -+ R def ines  a first i n t e g r a l  (2.10) 
l im t 
D o A E ( ~ , ,  t') except poss ib ly  x+. 

y y  = Gy" E Do A s ( x o ,  t ' ) ,  t hen  y(yr ,xo)  C t' = t e - to 

- t' = ~ ( t ' )  € J, Then k -  

I' t* - tk f o r  a l l  k 2 0. I n  f a c t ,  

li This  impl ies  that xb t l im 5 J- y . 
Note that t h e  ex i s t ence  of t h e  f i r s t  i n t e g r a l  is not  f u l l y  used and 

that t h e  theorem remains v a l i d  i f  only t h e  weaker condi t ion  
e 

cp(t6 = tk, t , t,) = t *  - tk+l 

holds. For cp(u) = a u  , 0 a 4 1, t h e  theorem ev iden t ly  provides t h e  usual 
iintqiJenese r ~ _ f i i ~ l t  ccnncr,tpd u j k h  t h e  qnntrectTnn thnnram, 

In t h e  case  when cp depends only on t h e  f i r s t  two v a r i a b l e s  we g e t  a 
somewhat l a r g e r  uniqueness domain. 

2.7 - Second Uniqueness Theorem: Assume t h a t  a l l  assumptions of the first 
uniqueness,theorern 2.7 -- - hold except that t h e  condi t ion  (2.14) is rep laced  by 
--- 

-- - 
(2.15) $'(Gy, Gx) 4 (o( g ( Y , X ) ,  g(Y,Xo)) 9 X,Y c D o *  

A 
Suppose t h e r e  e x i s t s  a po in t  ?2 E 3 ,  t 
Then t h e r e  is  no o t h e r  f ixpo in t  of G i n  D o n  S ( x o ,  t ) except poss ib ly  xh. 

- Proof: Let 
r e s u l t  is covered by 

follows by induct ion  t h a t  

k=0,1,... . I n  f a c t ,  u s ing  t h i s  as i nduc t ion  hypothesis  we have 

t& such that y ( t )  4 t f o r  t r C  t L  $. 
A 

h 
y c  = Cy* € Do A S(xo, t ). If 

so = $(y",xo) g t*, then t h e  

- tk where sk+l = ~ ( e , ) ,  

h 
2.6 --- . Hencetassume that t* 4 so .d t , It then  --- 

'k ? ( y e ,  %) 5 
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= v(sk> - y(tk) = sk+l - tk+l  

k r 
By Lemma 2.5, c lear ly  3 . b  sk = t and hence again x' = l i m  5 3 y ==- 

A Note that the 'best possible'  t is evidently the smallest f ixpoiat  
tYX > t* , t " E  J of  v ,  provided that such a fixpoint exists and of 
course that y(t) L t for t' c t c t'". 



-11- 

3. A Basic Applicat ion 

1 
I 

1 
I 
1 
I 
I 
I 
i 
I 
1 
1 
I 
I 
I 

e 

For t h e  d i scuss ion  i n  t h i s  and the  fol lowing Sec t ions  we shall assume 
that, un le s s  otherwise s p e c i f i e d ,  X and Y denote r e a l  Banach spaces ,  and 
that F: D C X + Y  is a given operator .  Fur ther ,  L(X,Y) 3.8 t h e  Banach space 
of a l l  bounded l i n e a r  opera tors  w i t h  domain X and range i n  Y. For t h e  sake 
of s i m p l i c i t y  w e  shall a l s o  use t h e  fol lowing nota t ions :  

(a) F e Lip (D 1, i f  \\Fy - Fx 11 L, y 11 y - x I I  
( b )  F E q ( D o ) , i f  F possesses  a bounded l i n e a r  Gateaux d e r i v a t i v e  

f o r  x E Do c Do 
Y O  

2 F ( x )  E L(X,Y) f o r  all x E  Do. 

( c )  F € T(Do),  i f  F has a Frechet  d e r i v a t i v e  F'(x) f o r  a l l  x E Do. 
C lea r ly  then  a l s o  F 6 8 ( D o ) .  

Note that by d e f i n i t i o n  F G q ( D 0 )  impl ies  that every po in t  x G Do is 
a n  i n t e r n a l  po in t  of D, i.e., f o r  x < D and z E X t h e r e  exists an 6 > 0 

such  that L + ts e D f o r  It/ L, c . 0 

The r ' e s u l t s  c o l l e c t e d  in the  fol lowing lemma a r e  well-known; s e e ,  f o r  
example, Vainberg [191 . 

A first and-s imple  a p p l i c a t i o n  of t he  r e s u l t s  of Sec t ion  2 is t h e  

fol lowing theorem which will provide t h e  basis f o r  a number of subsequent 

uniqueness r e s u l t s .  

Zrz - Theorem: Let G: D C  X + X  be such that --- Y O  
on some convex se t  DOC D, Assume that f o r  some x o G  Do t h e  es t imates  

G G F ( D o )  and C4.G Lip (D ) 

Then, i f  g(xo,t )C Do, t h e  i t e r a t e s  x+l =G$ , k n O , l , . .  remain i n  



1 2 
2 

y(u) -  4.1 where v ( t )  = 2 y t 
where cp(u,v) = - y u + yvu + 6u . It is r e a d i l y  seen  that cp(u-v,v) = 

2 + 6 t  + a , and y.' is evident ly  i so tone  
and has t h e  f i x p o i n t s  t+ and tie . Moreover, 
h = 1/2 i n  which case  taC= t'. Hence y def ines  a f i r s t  i n t e g r a l  of t h e  
d i f f e r e n c e  equat ion (2.4) corresponding t o  'p, and t h e  Kantorovich Lemma L 5  
assures that 

and Theorem 2.3 provides  t h e  convergence statement.  Since G is continuous,  
c l e a r l y  xk = Gx+ , and, i n  t h e  case  h=1/2, t h e  uniqueness follows from 

Theorem 207 and otherwise f r o m  Theorem 2.8. 

v( t )  < t f o r  t ' 4 t C t" un les s  

--- 
l i m  tk = tC< +a. Now Lemma 2.4 --- impl ies  that 5 6 g(xo,t') C Do, - -- 

-- 

--- -- - --- --- 
Note that i n  t h e  case  h C1/2 a l s o  t h e  usua l  c o n t r a c t i o n  $heorem app l i e s ,  

Thus t h e  nonl inear  es t imate  (3.2) provides  here  only t h e  convergence f o r  t h e  
border  case  h = 1/2 and gives t h e  l a r g e r  uniqueness domain, 

This theorem has immediate a p p l i c a t i o n  t o  t h e  genera l ized  chord method 

(3.3) xk+l 
where A t L ( X , Y ) .  For fu tu re  re ference  w e  phrase t h i s  i n  form of t h e  follow- 

, i n g  co ro l l a ry ,  

Z J j  - For F:D C X + Y  l e t  F E y ( D o )  and F' 6 Lip ( D  ) on a convex s e t  D o c  D. 

Suppose that A € L(X,Y)  has a bounded inve r se  'A=' C L(Y,X)  and l\Aolll 4 f3. 

Choose xo 

h= Bya/(l-6)* G 1/2 and def ine  tL,  tLC by (3.1). If g(xo , t c )  C Do, t hen  t h e  
i t e r a t e s  (3.3) remain in s (xo , t " )  and converge t o  a s o l u t i o n  x' of Fx = 0 

which is unique i n  Do A S(xo,t'"). 

--- 

Do such that I t 1  - A ' l F ' ( x o ) l (  4 6 C 1, I(n'lFxol( 4 a and 

This r e s u l t  is e s s e n t i a l l y  a theorem of Kantorovich and Akilov [g] , It 
con ta ins  as s p e c i a l  case  the  well-known convergence theorem f o r  t h e  modified 

Newton method 



Another c o r o l l a r y  is t h e  following r e s u l t  

3.4 - -- - Let  X be a r e a l  H i lbe r t  space and F: D - -- c X-X such that FET(D,)  and 
F ' C  Lip (D 

is s e l f a d j o i n t  and s u zI12 1 (F'(xo)z, z )  2 a I( zh2 , z 
that h = y \ IFx&/d 6 1/2. W i t h  a/(1-6) = I t  Fxoll/u de f ine  t', tfd by (3.110 
If  z (xo , tF  

OR a convex s e t  D O C  D. Suppose that f o r  some xo E Do , F'(xo) 
Y O  

X, with u > 0, and 

c Do, t hen  t h e  sequence 
2 - %+1= 5 s  - a+= Fxk 9 k=0,1,.. 

remains i n  g(xo,t* 

Do" S(xo,t '  1. 

Then IIG'(xo)\l L max(l1-w T ]  ,I 1- b u l l  = 6, and bd assumes its m i n i m u m  
f o r  w = 2/(a+s). 

and converges t o  t h e  only s o l u t i o n  x k o f  Xk = 0 i n  

The proof fol lows from Theorem 3.2 i f  we  s e t  Gx = x - w F x  with  w>O. --- --- 

The c o r o l l a r i e s  2.3 and 3.4 --- were o r i g i n a l l y  proved under t h e  assumption --- -- --- 
that F is twice Frechet  d i f f e r e n t i a b l e  and [I F''(x)I[ I y 

t h e  condi t ions  on F by assuming only that F G 9 (Do) and 11 ; > F ( ~ ) - ~ F ( x ) / [  4 y 

in Do, then t h e  es t imate  (3.2) f o r  G x  = X  - A-lFx reduces t o  a l i n e a r  
c o n t r a c t i o n  estimate.  Although t h i s  is an extremely s imple r e s u l t  i t  has been 
r epea ted ly  announced i n  var ious contex ts ,  and we shall not  go i n t o  d e t a i l s  

here. S l i g h t l y  more i n t e r e s t i n g  is t h e  case  when G is no t  a s tandard  contrac-  
t i o n  but  an  ' i t e r a t e d  cont rac t ion '  i n  t h e  sense  of Theorem 2.3. 

in Do. If  we reduce 

--- --- 
Tz2 - Let F: D C X + Y be such that F G  9 ( D o )  and k a F ( y ) - 2 F ( ~ )  114 y 

. a l l  x,y from a convex se t  Doc D. Suppose that f o r  aome x- E D- and E g L(Y,X) 

we have B?F(x 0 )B = B. If 1 B k l  P and By 4 1 as w e l l  asuS(xo,t') c Do where 
= 5 - B%, k=O,l,.. , remains t+ = UBFxo {l/(l-f3y) , then the  sequence 

i n  S ( x  , t*)  and converges t o  a s o l u t i o n  x* of BFx = 0. 

- Proof:. Se t  Gx = x - BFx , then 

f o r  --- 
v 

%+l 
0 

I IG(GX)-GX~ = 11 - B F ( G ~ )  I( = It -B F ( X ~ ) B F X  - BF(GX) + B F ~  I( 
= 1 B [>F(xO) (Gx-x) - F(Gx) + Fx]I/ 4 & (( G x  - x 11 

whenever x,Gx GD,. Hence, Theorem 2.3 a p p l i e s  with cp(u) = Pyu. --- --- 
The cond i t ion  B>F(xo)B = B p lays  a c e n t r a l  r o l e  i n  t h e  theory  of 

genera l ized  inve r ses  of a F ( x o ) .  Theorem 3.2 -- 
somewhat improved ve r s ion  of a r e s u l t  of Ben-Israel C3J . r e p r e s e n t s  a modified and - -- 
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4..Approximate Newton Processes 

In t h i s  Sec t ion  the  theory  of Sec t ion  2 is app l i ed  t o  processes  of t h e  

form (1.2). More s p e c i f i c a l l y ,  we shall first consider  t h e  i t e r a t i o n s  

where f o r  f ixed  x ,  A(x) is a l i n e a r  operator.  D i f f e ren t  r e s u l t s  a r e  obtained 
depending on t h e  i n v e r t i b i l i t y  assumptions placed upon A(x); t h e  s imples t  
case is when A(x) has a bounded l i n e a r  i nve r se  i n  t h e  e n t i r e  domain. 

4.1 - Theorem: Let F: D C X 3  Y be such t h a t  F E. T(Do) and F' CG Lip (D 
a convex se t  Do C Do Suppose t h a t  A: Do C X 3 L(X,Y) has f o r  each x g  Do a 
bounded inve r se  A-' E L ( Y , X ) ,  and that 11 Aol([ L B, (1 F'(x) - A(x)(l & 6 f o r  
x C Do ., Let xo e Do be such that I/ A'l(xo)Fxo(\ 4 a and h= - 2 Pya + $6 

If E(xo,r)  C Do where r =: a/( l -h)  then  t h e  sequence {%\ defined by (4.1) 
remains i n  H(x , r )  and converges t o  a s o l u t i o n  x' of F'x = 0. 

- Proofr  Define G: Do C X-X ,  Gx = x - A-'(x)Fx ; then ,  whenever x,Gx E Do 

on 
Y O  --- e-- 

1 1. 

0 

11 G ( G ~ )  QX II = 11 - A - ~ ( G ~ ) F ( G ~ )  I/ .C 

t p I( (A(x)-F'(x))(GX-X)// I ~ p (  II GX-x II 

p 11 F ( G ~ )  - ~ . n  - FVX) CGX-X)II 
(4.2) 

2 where ~p(u> = 5 By u + $6 u . Thus we have t o  consider  t h e  d i f f e r e n c e  equat ion  

with t 
f o r  a l l  k 2  1. Hence, 

tk+l  

t h e  convergence fol lows f r o m  Theorem 2.3. Since c l e a r l y  x * € D o  and A'l(X?) 
is nonsingular ,  ev iden t ly  

= 0, ti = a. Evident ly ,  t, -.t, = ha < a and by induct ion  
0 c A - tk p+ h( tk  - tk,l) as well  as tk - tkml - 4 a 
a h j  and the re fo re  l i m  tk = t' 6 a/( l -h)  = r 4+-  exis ts  and 

tk J =e 

x' = Gx* impl ies  Fx!= 0. 

In t h e  s p e c i a l  case  of Newton's method we have A(x) = F'(x) and hence 

6 = 0 and h =.& By . For t h e  s o l u t i o n  of t h e  reduced d i f f e r e n c e  equat ion  (4.3) 
i t  then  fol lows immediately by induct ion  that 

2 

k which r e a d i l y  impl ies  that 
h2 -1 

t*  - tk a 
1 - h  2k 

thus  g iv ing  t h e  u s u a l  quadrat ic  convergence of Newton's method. T h i s  resul t  
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about  Newton's method is genera l ly  known as t h e  Newton-Mysovskii theorem 

(see.  L131). t 
I n  t h e  genera l  case  when 6 > 0, t he  convergence is c l e a r l y  only linear. 

Besides t h e  e r r o r  es t imate  (2.2) which always holds when a majorizing 
sequence has been found, we can also der ive  i n  exac t ly  t h e  same manner as (4.2). 
t h e  non-computable e r r o r  es t imate  

U r BY 11 xx - SI1 + I IX - q( I1 x y  - % + l U  2 
8 

which f o r  6 = 0 aga in  g ives  t h e  quadra t ic  convergence of Newton's method. 

n 
I 
1 
I 
1 
I 
1 
8 
8 
E 
I 
1 
I 

It is not d i f f i c u l t  t o  genera l ize  t h i s  r e s u l t  - f o r  example, by assuming 

a <  A <  1 f o r  a l l  x,y E Do. T h i s  changes t h e  d i f f e rence  equat ion (4.3) 

x only that F' satisfies a HSlder condi t ion  l\F'(y) - F'(x)ll 
wi th  
t o  

y IIy - XI( 

bu t  does not a f f e c t  t h e  proof procedure. For X 5 0 w e  can use Lemma && (b) 
and ob ta in ,  a l r eady  i n  t h e  case  when F E %(Do), that 

--- 

i\ G(Gx) - G x \ (  B(y+b) iiGx - x I( 

which means that t h e  convergence condi t ion  then  reduces t o  p ( y + b )  d 1. 

In h i s  convergence proof of Newton's method Kantorovich assumes only that 

F'(x)  is i n v e r t i b l e  at  xo, then us ing  Banach's lemma t o  a s s u r e  t h e  inver -  
t i b i l i t y  a t  a l l  f u r t h e r  i t e r a t e s .  T h i s  i d e a  can be extended t o  t h e  gene ra l  
Frocer;e (4+1), It l e a d s  t o  a nonl inear  d i f f e rence  equat ion f o r  which no 

e x p l i c i t  s o l u t i o n  appears t o  be known except f o r  s p e c i a l  va lues  of t h e  para- 
meters. Following is a summary of t he  bas i c  m a t e r i a l  about this d i f f e r e n c e  
equation. 

t o = O  , t l = a  , O  < p 4 u L 1 ,  k d 9 2  

where 

[tE[ satisfies t: I tk+l, k 2 0, and lim tk = e* < 
(pi,a) wi th  0 C pi I pi , i=l,..,k, 0 L, a L, a , t h e  s o l u t i o n  (t,) is again 

nondecreasing and . I f  
and 

pi L 0, i=l,. . ,k. If f o r  some parameter s e t  (pi, 0 0  a ) t h e  s o l u t i o n  
0 l/p4, t hen  f o r  any 

1, p3 + p4 =- 2p 

0 0 

1 lim tk = t" ,C p1 > 0, 0 5 p2 
Oi 4 a & (1-p2)'/4p1 , then the  tk are s t r i c t l y  i n c r e a s i n g  and 
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- Proof :  Clear ly ,  

cp(u,v,w) = [P1 u 2 + (P, + p w) u 3 1 p4v 

is  of C l a s s  r 3 (Q) w i t h  Q = [ O , a )  x EO, l /p4) Y LO, The f a c t  that 
0 0 06 tl 2 tl ,> 0 and 

tk 5 to k 

t: t k + l  L t 4 1/p4 then  impl ies  by induct ion  that 
f o r  k 2  0. 

For the proof of t he  second part s e t  

u ( t )  =pit 2 - (1 - p,>t + a , v ( t >  = 1 - p4t . 
tk+l =- tk + Y<tk) 

Then 
U(t,) 

' to = 0 9 k=O,l,... 

is a first i n t e g r a l  of (4.4). I n  f a c t ,  

It is easy t o  v e r i f y  that t* is t h e  sma l l e s t  f i x p o i n t  of y t ) =  t + u ( t ) / v ( t ) .  
Moreover, s i n c e  u ( t ) / v ( t )  b 0 f o r  0 4 t < tC, it  follows that t 4 y ( t )  
f o r  0 C t C t* .  A. computation analogous t o  (4.5) shows that 

ti - V ( t )  

f o r  0 4  t 4 t" s i n c e  
7 r: /. \ a  I /  r 7  t 7  - *3t = p4t 24" - - \A'P2> - y \'-y2 J - 4pla 

6 Now tl = a  4 t 

tk Lc t k + l  

f o r  otherwise u (a )  = 0 lead6 t o  a con t rad ic t ion ,  and hence 
4 t' f o r  a l l  k 2 0 and l i m  tk = t". 

Using t h i s  lemma we now o b t a i n  t he  following convergence r e s u l t  f o r  (4.1). 
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h ZK aFya/(l-@6,)* 5 1/2 where Q E max(1, (q+bl)/y). S e t  
t ~ r  - I + d1-2h/a' aa 

h 1-PbO h 1-m0 . - 9 
1 -  t 3  a (4.6) t' = 

I f  ?(xo,t") C Do, then  t h e  sequence {%\ defined by (4.1) remain8 in S(Xo,t') 
and converges t o  a s o l u t i o n  xT of Fx = 0 which is unique in D 

- Proof: For x E S(xo,tr) we have 

n S(xo,t"). 
0 

Hence, by Banach's lemma, A h )  is nonsingular and 

Therefore,  Gx = x 0 AoL(x)hc is defined on S(xo,t'), and if x, Gx are 
contained i n  this open ball, then  

11 G(G~) - GX 11 = 11 - A-'(GX)F(GX) 11 

Hence, t h e  d i f f e r e n c e  equation (2.4) i n  t h i s  case  has t h e  form (4.4). Now, 

and 
1 0 2  a = a o  L - ( 1 - p 2 >  
2Pl 

. 
The case  a E O  can be excluded s i n c e  otherwise a l r eady  Fxo = 0; by 4.2 it 
t h e r e f o r e  fol lows that t h e  tk a r e  s t r i c t l y  inc reas ing  and that 

Now by Lemma 2.4 (b), 
Theorem 2.2. The fact  that 

-- --- 
l i m  tk 6 t". 

C S(xo,t') and convergence is obtained by === 
Fx' = 0 fol lows from -- 
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The uniqueness is a. d i r e c t  consequence of 3.2 -- 
process  

appl ied t o  t h e  modified --- -1 = % - B'. (xo)E% , kzO,l,.. %+l 

The f requent ly  mentioned Newton-Kantorovich theorem is obtained as t h e  

s p e c i a l  case when F'(x) y = q, 60 = 61 E 0 and hence u = 1, 
and all condi t ions reduce exact ly  t o  those of t h e  Newton=&ntorovich theorem. 

A d i r e c t  proof of that theorem using t h e  est imate  (4.7) and t h e  concept of 
major i s ing  sequences was independently found by Ortega [161 
s i m p l i c i t y  of t h i s  type of convergence proof when compared with t h e  proofs 
known heretofore.  

A(x). Then 

showing the  

Note, i f  we assume only that IF1(xo) - A(xo) I( g b o ,  then t h e  o ther  

condi t ions  on F' and A assure that I( F'(x) - A(x) [I 4 bo + (y+q) I( x - xo\\ 

I n  that case we need Q = 3 , 

Ak always,the e r r o r  es t imate  (2.2) is a v a i l a b l e  f o r  t h e  i t e r a t i o n  considered 

i n  4.2. In add i t ion ,  a non-computable e r r o r  es t imate  of t h e  form ==- 

can be derived i n  t h e  same way as t he  p r i n c i p a l  estimate (4.7). For Newton's 
method t h i s  provides i n  the  case h 1/2, i.e., t '  C 1 / B q  , t h e  estimate 

aga in  giving t h e  quadrat ic  convergence. If 609 bl are not both zero,  then 
. A 6  ,, 4 l / p q  and hczce we &-re l i n e a r  convergence with a convergence f a c t o r  

Another s p e c i a l  case of Theorem 4.3 is t h e  following extension of a 
theorem of Bryan [4] . 
4.4 = For F: D c: X-s Y let F 
Do C D ,  and suppose that P: L(X,Y)--s L(X,Y) is a bounded l i n e a r  operator  w i t h  

11 Pi l i  1 and [(I-P 4 1, Assume that a t  xo Do , (PF'(xo)) 6 L(Y,X)  exis ts  
and that t h e  es t imates  ]l(PF'(xO))'lI 1 p , /IF'(xo){l 4 60 l((PF'(Xo)) Bd\  L Q 9 

and P(j0 L 1 , h = Z & a / ( l - p S .  )' 5 1/2 hold. With Q = 2 def ine  t', t tb  by 
(4.6). If 

e (Do) and F' g Lip (D on some convex s e t  
Y O  --- --- 

-1 
-1 

0 

E(xo,tC) C Do, then t h e  sequence 



remains i n  S(x  ,t') and converges t o  a s o l u t i o n  x y  of Fx = 0 which is 
unique i n  ~~n s (xo, t") . 0 

The proof follows immediately from Theorem 4.3 i f  we s e t  A ( x ) = ,  PF'(x); ==- 
t hen  y ~ - q ,  b,, I y, and u = 2. 

Bryan developed h i s  r e s u l t  for  a convergence a n a l y s i s  of t h e  Newton- 

Jacob i  i t e r a t i o n  

f o r  t h e  s o l u t i o n  of a nonlinear system 
method w a s  o r i g i n a l l y  suggested by Liebers te in  [ld. In t h i s  case P naps 

every A = (a. .> i n t o  its diagonal part PA = diag(all,. . . ,a 
and monotone norms have t o  be used. 

f i ( y ,  ..., x ) = 0, i=l,...,n ; t h i s  n 

n x n matrix 1, =J M 

Zincenko [21] , [221 has shown that the  d i f f e r e n t i a b i l i t y  condi t ion on F 
used i n  Theorems 4.1and 4.3 can be replaced by corresponding condi t ions 
on A. H i s  theorems, o r i g i n a l l y  proved by Kantorovich's majorant method, can 

a l s o  be proved e a s i l y  by the  techniques developed here. We shall phrase only  

t h e  Zincenko r e s u l t  corresponding t o  Theorem 4.3 c t h e  r e s u l t  corresponding 
t o  t h e  s impler  Theorem 4.1 should then be self-evident ,  

--- - -- --- -- 

--- - -- 
--- --- 

2ts - Suppose that on some convex s e t  D C DPQDK , F: DF C X +Y is cont i -  

nuous and K: D C X + Y  s a t i s f i e s  K t^ F(D >, K' C Lip (XI ), and, moreover, 
t h a t  E-K E Lip6,(Do). Assume that f o r  some x G Do , ( X ( ( X ~ ) ) - ~  C L(Y,X) 
e x i s t s  and that [ [ ( K ' ( X ~ ) ) - ~ \ [  4 B 
and 
S(xo,t') CDo,  then  t h e  sequence 

0 -- - 
tc 0 Y O  

0 -  

Il(K'(x >)-?Fx 4 a , as w e l l  as @6 L 1, 
0 0 

h = /3ya/(1-f36)2 5 1/2. With  ijO=6 and def ine  t*, tCbby (4.6). If - 

xk+l"xk  - 
remains in S(x , t Y )  and converges t o  t h e  only s o l u t i o n  x 4  of Fx = 0 in 

DonS(xo,t"). 

- P r o o f s o r  x c s ( x 0 , S )  we have 

0 

(I K'(x) - g?(xo)\l L y l ix - XJl 4 y t* d J 1 

and hence by Banach's lemma, K'(x) is nonsingular and 
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Therefore ,  Gx = x - (K'(x))'%x is defined on t h e  open b a l l  S(xo,t")  and, i f  

x, Gx are i n  t h i s  b a l l ,  t hen  

[I G(G~) - G~ \( = 11 -(KvG~))"F(G~) I[ 
4 ~~K(Gx)-~-K'(x)(Gx-x)[~ + {I (F(Gx)-K(Gx)) - (Fx-Kx)II] 

1-BY I( Gx-xo I[ 
G q( I\ Gx-x 11 9 I\ Gx-X )I 

0 
where 

q(u,v> = r--&- @Y V [ $ y u 2  + 6 u 1 .  

The d i f f e r e n c e  equat ion is the re fo re  a s p e c i a l  case  of (4.4) with 

1 = 0, P4 = iirv = 2Pl ' *3 PI = z BY 9 P2 = w 
This  fa l ls  under t h e  case  considered i n  t h e  second p a r t  of 4.2 and t h e  con- 

vergence s ta tement  i n  t h e  theorem is now a d i r e c t  consequence of Theorem 2.3 
t oge the r  with Lemma 2.4 --- (b).  The f a c t  that Fx' = 0 follows from t h e  es t imate  
formed analogously t o  (4.8); f i n a l l y ,  t h e  uniqueness is a d i r e c t  consequence 

of 3.3 --- appl ied  t o  t h e  process  

--- --- 
--- --- 

--- 
-1 x+l = % - (K'(xo)) F 5 ,  k=0,1,... . --- 

So far, w e  have considered only t h e  i t e r a t i o n  (4.1) and not t h e  process  
(1.2) mentioned i n  t h e  introduct ion.  In t h e  case  when in (1.2) 
has a bounded l i n e a r  i nve r se ,  most r e s u l t s  given i n  t h e  l i t e r a t u r e  simply 
reduce t o  Theorem 2.1 . O f  a s l i g h t l y  d i f f e r e n t  cha rac t e r  is t h e  fo l lowing  
w -  cenaralizati an of a result of Ben-Israel f_s]. 

B(x) no longer 

-- --- 

4.6 - Let Ft D C X -SY be such that F tG T(Do) and F' G Lip (D ) on some 
convex s e t  Do C D ,  and suppose that B: Do C X 4  L(Y,X) is a mapping wi th  t h e  

p r o p e r t i e s  1 B(x)\l 5 f3, and 
l e t  

(4.8) I\ B(x)F'(x)z - z 11 4 6 I( e l  

If f o r  some x o E  Do, 11 B(xo)Fxoh L a ,  h = 
S(xo, a / ( l -h) )  C Do, then  t h e  sequence (sf defined by (1.2) remains in 
this b a l l  and converges t o  a s o l u t i o n  x* of B(x)Fx = 0. 

- Proof; Se t  G: Do C X + X ,  Gx = x - B(x)Fx ; then ,  f o r  x, Gx 

Y O  --- --- 

I\(B(y)-B(x))Fy\1 4 q [(y-x(( for x , y E D o .  Moreover., 

f o r  x 6 Do, z E B ( x ) Y  . 
Pya + (q+6) 4 1 as w e l l  as - 

E(xo,a/(l-h)) 

((G(Gx)-Gx I( d {/(B(x)-B(Gx) )F(Gx) I( + I( B(x) (F(Gx)-Fx-F'(x)) (Gx-x) (1 
+ [B(~)F*(X)(GX-~) - (GX-X)C\ I $ (( G X - X ~ ~  + (q+6) (IGX - xi 
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where i t  was taken i n t o  account that by d e f i n i t i o n  
we have a nonl inear  es t imate  with 
d i f f e r e n c e  equat ion has a l r eady  been considered in t h e  proof of 
and it is now easy t o  check that t h e  r e s u l t  follows d i r e c t l y  from Theorem L2. 

Gx-x € B ( x ) Y .  Hence, 
1 
2 y(u)  = - @yua + (q+6)u . The corresponding 

Theorem 4-1. --- 
--- 

Note that when condi t ion  (4.8) is rep laced  by t h e  s t ronge r  condi t ion  
I[ I - - B ( x ) F ' ( x ) ( ~ L  6 ,  x & Do, we ob ta in  RGy - GxI( L, y( 
o t h e r  hand, i f  we weaken t h e  d i f f e r e n t i a b i l i t y  condi t ion  f o r  F by assuming 
only that F 4 ?(Do) and IIaF(y)-.>F(x)f 4 y,  then (1 G(Gx) - Gx [ 
(Pyuq+6) # Gx - x 
Ben- Isr a e 1. 

y - x 11) .  On t h e  

f o r  x, G x  € Do. This r ep resen t s  t h e  approach used by 



5 Some General izat ions 

In its present  form t h e  theory of Sec t ion  2 a p p l i e s  only t o  processes  
%+1 =G%, k=0,1,... . It is not d i f f i c u l t  t o  see how t h i s  of t h e  form 

theo ry  can be extended t o  cover the more gene ra l  procesees 

which, inc lude  f o r  ins tance  t h e  i t e r a t i o n s  (1.3) . 
5.X --- - Extended Majorant Theorem: Consider a sequence of opera tors  Gk:DkCX+X, 

k=0,1,.., on t h e  complete metric space X, and suppose t h a t  wi th  c e r t a i n  
'pk( r (Q), k=O; l , . .  , and some poin t  x E D 

--- 
3 t h e  estimates 

0 0 

(5.2) (Gk+l(%x) ,Gk"> 4 'pk( 7 (Gkx,x) , 7 (Gkx,xo) 9 (x,xo)) 9 k=o,1, ... 
og 

hold whenever x,Gkx belong t o  a convex set 
t h e  sequence {tk$ defined by the  r ecu r s ion  

(5.3) tk+l - tk - - Qk-l(tk - tk,l' tkv tk,l , k d ,  2, , 
with  to z 0 and t E ~(Goxo,xo)  e x i s t s  and converges t o  t r C i a .  I f  t h e  
sequence 

D. C Dk. Assume f u r t h e r  that . 
.O 

deffned by (5.1) remains in D ,  then  [tk\ majorizes  (5) and 
e x i s t s  and the e r r o r  es t imate  (2.2) holds. F hence lim 5 = x 

The proof is completely analogous t o  t h a t  of Theorem 2.2. -- 
The condi t ion  [x,\ C D 

c- 

can again be rep laced  by t h e  assumptions of ..- 
Zemma L 4 ,  o r  by a condi t ion  such as GkD' C D' f o r  a l l  k L O  with  D' C D. -- 

If (5.2) is changed t o  t h e  s t ronger  es t imate  

(5.4) 7 (Gk+lY* Gk") 'Pk( y(y,x)9 c(Y9xo)9 ($x9xo)) 9 k=O,l,.* 

then  a f i x p o i n t  statement can be obtained. 

z2g - Suppose a l l  condi t ions  of Theorem 5.1 --- are v a l i d  but  that i n s t e a d  of 
(5.2) t h e  condi t ion  (5.4) holds f o r  a l l  x,y €D. Moreover, l e t .  
--- --e 

l i m  (p,(t" - tk, t', tk> =. o . 
4349 

A 
If 6:. 6 C X--, X is a n  opera tor  such that x'E D and that 

lim Y ( ~ x * ,  GkC) = 0 , 
&+PO 

c 
t h e n x  i s  a f i x p o i n t  of 8. 
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The proof fol lows d i r e c t l y  from 

Note that i n  t h e  case 'pk= cp , k 2 0, condi t ion  (5.5) w i l l  be s a t i s f i e d  
i f  cp is continuous at  (O,t',t*). 

5.2 -- complements r e s u l t s  f o r  i t e r a t i o n s  of  t h e  type (5.1) obtained by --- 
Ortega and Rheinboldt c143. 

Similar t o  t h e  r e s u l t s  of Sec t ions  3 and 4 we can now formulate a v a r i e t y  
of r e s u l t s  f o r  i t e r a t i o n s  of the type 

(5.6) %+l 
As a t y p i c a l  example,an extension of Theorem 4.1 shall be presented here. 

X and Y now aga in  denote Banach spaces. 
--- 

. 

2.2 - For F r  D C X +  Y l e t  F e x ( D O )  and F' E Lip (D 
,E- Y O  
and suppose that 
bounded inve r ses  
and flk+16k C_ 6 d 1, and assume that f o r  some xo G Do, a A - 5 ~  0 0  ([ g a and 

h = Py0r/(l-6)~ f 1/2. Define tC and t"' by (3 .1) .  If g(xo,t ') c Do t hen  t h e  
s e que nc e {x& defined by (5.6) remains i n  g(xo, tC)  and converges t o  a s o l u t i o n  

on a convex set  D O C  D, 
% (S L ( X , Y ) ,  k=0,1,.., is a sequence of mappings wi th  

-1 
.;;'€ L(Y,X) and l \ % l l \  I. PkC P.  Let bF'(xo)-% I\ C 6k 

, t"! . ,A, s(x * -- c- ef Fn = 6 which is ii~qti.e in 
0 

For t h e  proof s e t  Gkx = x - %h'x ;- then  f o r  x, Gk" Do 

IIGk+l(Gkx)' Gkx [[ = 11 -Ak,l'F'Gkx'li -1 ' Pk+l I( F(G~x)-Fx-F*(x) (G~x-x) 11 

.+ Bk+l~l(F'(X)-F'(Xo)jl + l / F ' ( X o ) - ~ l i ~ ~ / ~  GkX - X 11 

,C 2 lGkx - XI[ + (6 + / ( x  - Xol() IrGkX - XI1 
1 2 

which leads t o  a d i f f e rence  equation of t h e  same form as that used in t h e  

proof of Theorem 

and Theorem z&. The uniqueness fol lows aga in  from Theorem 251 app l i ed  
t o  t h e  process  

Thus t h e  r e s u l t  is a d i r e c t  consequence of Lemma 2.4 --- === 
--- -1 --- 

%+1 = 5 - A. F$, k=0,1,.. . 
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I 

If we reduce t h e  d i f f e r e n t i a b i l i t y  condi t ion  of F t o  F C !(Do) and 

assume only that 1 aF(y ) -  aF (x ) \ l  & y i n  Do , then  (5.7) reduces t o  

(5.8) \I Gk+l(( ik")  Gkx I\ 6 (BY + 6 )  I( Gkx - x 11 
The corresponding convergence theorem rep resen t s  e s s e n t i a l l y  a r e s u l t  of 
Bartle [l]. 

It is even poss ib l e  t o  drop t h e  d i f f e r e n t i a b i l i t y  of F e n t i r e l y  by 
assuming only that 

(5 .9 )  11 FY 0 Fx 0 %(y-X>\( 4 qk 11 y - x \I , X,Y Do , k=0,1,.. 
where f3,+,qk 4 h L 1 and g(xo, a / ( l -h) )  E Do and {ll$a] is bounded. 

Theorem 2.3 - as wel l  as t h e  simpler r e s u l t s  based on (5.8) o r  (5.9) can --- 
be app l i ed , fo r  i n s t a n c e , t o  approximate Newton processes  of t h e  form 

where {%! is some given sequence of points .  Such processes  have been 
considered by B a r t l e  c l3  and Schrgder (181. The var ious  poss ib l e  r e s u l t s  

depend i n  t h i s  case  aga in  on (a )  t h e  d i f f e r e n t i a b i l i t y  assumption about F, 
i.e., whether F r(Do) and F' E Lipy(Do) o r  F E g ( D o )  and i > F ( y ) - a F ( ~ ) l l  
and on (b )  t h e  i n v e r t i b i l i t y  assumption about F ' (x) ,  i.e., whether 
( F S ( ~ ) ) - ~  E L ( Y , X )  e x i s t s  f o r  a l l  x G D~ o r  only ( ~ * ( x ~ ) ) - '  G L(Y,x) .  we 
shall not formulate here  t h e  d i f f e r e n t  theorems a r i s i n g  from t h e  va r ious  
combinations of t hese  conditonsg t h e i r  form as w e l l  as t h e i r  p roofs  based 
on Theorem 2.1 -- should be evident.  

6 ,  

-- - 
There is a l s o  a p o s s i b i l i t y  of applying Theorem 2z& --- d i r e c t l y  t o  processes  

of t h e  form 

When t h e  same assumptions a r e  made about A(x) as i n  Sec t ion  4, t h e  r e s u l t i n g  
d i f f e r e n c e  equat ions a r e  aga in  e i t h e r  of t h e  form used i n  Theorem 4-1 --- o r  of 
that discussed i n  Lemma lttz. --- 

In Theorem 5_%2 and t h e  subsequent d i scuss ions  w e  have avoided t h e  d i f f i c u l t  --- 
problem of ana lys ing  t h e  r ecu r s ion  (5.3) by fo rc ing  a l l  'pk t o  be equal. The 
problem of determining when the  s o l u t i o n  of t h e  r ecu r s ion  r e l a t i o n  (5.3) with 

v a r i a b l e  'pk converges t o  a f i n i t e  l i m i t ,  is f o r  a l l  p r a c t i c a l  purposes an 
open ques t ion ,  except when ( 5 . 2 )  has t h e  s p e c i a l  form 
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i.e., when (5.3) reduces t o  

I n  that case w e  have k 

and i t  is r e a d i l y  seen  that t*C-C-  i f  qk L, q. C 1 f o r  k L ko. T h i s  can  be 

app l i ed  t o  (5.8) when t h e  fl' a r e  not estimated by p, fee . ,  when the constant  
on t he  r i g h t  is allowed t o  depend on k. 

k 

It should a160 be noted that the r e s u l t s  of K i v i s t i k  [lo] a r e  of the  type 
considered i n  Theorem z,& and that i n  one of h i s  cases  the  'pk are v a r i a b l e  
and a r e  themselves given by a recurs ion  r e l a t i o n .  

--- 

Theorem 5 . 1 r e p r e s e n t s  only one poss ib l e  extension of Theorem 2.3 t o  the 

i t e r a t i o n s  (5.1). I n  p a r t i c u l a r ,  t h e r e  is no reason why t h e  r i g h t  hand s i d e  
of (5.2) should only depend on t h r e e  terms and should' not inc lude  terms such 
as Y(Gjx, Gj,lx) e tc .  w i t h  1 Ir j 4 k-1. This of course inc reases  the order  
of the d i f f e rence  equat ion and thus m a k e s  i t  even more d i f f i c u l t  t o  f i n d  

convergence condi t ions  f o r  the tk. 

& v e r y  simple example of t h i s  extended type of es t imate  is a wellknown 
r e s u l t  of Cacciopol i  i5J , and l a t e r  Weissinger c203 , who considered the 

i t  e r a t i o n  = G s ,  k=0,1,.. , under the  general ized con t r ac t ion  cond i t ion  %+1 

rg 

w i t h  L a k  < og . In  our s e t t i n g  t h i s  condi t ion  can be weakened t o  
Q 2 0  

The corresponding d i f f e r e n c e  equation is then 

tk+l - tk = ak tl ' to = O ,  t l = a  
00 

w i t h  tf ={& ak)a. 

Finally, i t  should be noted t h a t  a l l  our r e s u l t s  can be extended immedi- 
l 

a t e l y  t o  spaces  metr ic ized by elements of a p a r t i a l l y  ordered topo log ica l  

l i n e a r  space. Yee, f o r  example, C o l h t z  C63 f o r  a d i scuss ion  of such spaces. 
However, i n  that case the  d i f fe rence  equat ion (2.4) and the r e c u r s i o n  (5.3) 
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represent re la t ions  i n  such par t ia l ly  ordered spaces and the problem of 
determining yffen the tk converge i s  compounded even further. A var iety  
of  s p e c i a l  regu l t s  can of course be formulated also i n  t h i s  case, but 
deeper r e s u l t  ;can only be expected once the resu l t ing  difference equations 

and recursione, are bet ter  understood. 

. ,  

% 
8 
, 
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